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  Abstract 
We construct the one-dimensional analogous of von-Neumann Wigner potential 
to the relativistic Klein-Gordon operator, in which is defined taking asymptotic 
mathematical rules in order to obtain existence conditions of eigenvalues embed-
ded in the continuous spectrum. Using our constructed potential, we provide an 
explicit and analytical example of the Klein-Gordon operator with positive eigen-
values embedded in the so called relativistic “continuum region”. This result is 
analogous to the found in non-relativistic case for Schrodinger’s operator. Even 
so, in this not standard example, we present the region of the “continuum” where 
those eigenvalues cannot occur. Besides, the absence of eigenvalues in the conti-
nuous spectrum for Klein-Gordon operators is proven to a broad general potential 
classes, including the minimally coupled electric Coulomb potential. Considering 
known techniques available in literature for Schrodinger operators, we demon-
strate an expression for Klein-Gordon operator written in Schrodinger’s form, 
whereby is determined the mathematical spectrum region of absence of eigenva-
lues. 
 
Keywords 
Schrodinger operator, Klein-Gordon operator, continuous spectrum, eigenvalues, 
von Neumann-Wigner potential 

 
1. Introduction 

Theories involving general spectral problems are well-developed of a mathematical point of view for operators from 
non-relativistic quantum mechanics. In fact, this is a widely investigated area in recent papers of mathematical physics. 
However, the known relativistic operators that arising in the relativistic quantum mechanics still require certain mathe-
matical rigours in terms of indispensable properties that need tobe demonstrated in spectral theory. As example, since of 
von Neumann-Wigner work [1], we have known that there is a potential whereby eigenvalues equations for Schrodinger 
operator provide an unitary positive energy [2]. Great efforts of scientific community are aimed to investigate potential 
classes in which eigenvalues equations provide only negative eigenvalues. In particular, in the non-relativistic case of 
Schrodinger there are general theorems that proven the mathematical and physical question of non-existence of positive 
eigenvalues in the continuum or essential spectrum [3-8]. For Schrodinger’s operator, the positive spectrum is known as 
continuum spectrum, and a relevant problem of a mathematical point of view it is localize the essential spectrum that for 
Schrodinger’s operator is exactly the same continuum spectrum. A non-trivial question in mathematical physics is loca-
lized the essential spectrum of the relativistic Klein-Gordon (K-G) operator coupled to some interaction potentials. There 
is a consistent demonstration for some potential classes that proven that positive relativistic region of the continuum (also 
namely in literature of positive continuum region [9]), it is the essential spectrum, that is, the region [m, ∞) [10, 11]. The 
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negative continuum region occurs in (−∞, −m], being known as Dirac’s sea. Conditions of absence of eigenvalues for 
Schrodinger’s operators are well addressed problems in literature, as discussed above (more details can be seen in Refs. 
[3–8]). However, such conditions for relativistic operators still need of general theorems, i.e., theorems capable to define 
with mathematical rigours the absence of eigenvalues in the located essential spectrum. In particular, in physical prob-
lems the continuum spectrum is traditionally taken (without lost of generality), and locating the essential spectrum is 
commonly treated as an essentially mathematical problem. In fact, by use of the relativistic Virial theorem, using the ver-
sion demonstrated by Kalf [12], it is possible proving the theorem of absence of eigenvalues in systems with Coulomb 
interaction potential to Dirac’s operator. An alternative explanation can be found in Ref. [13]. 

For Klein-Gordon (K-G) operators, general theorems of absence of eigenvalues keep non-demonstrated up to now. A 
standard reduction procedure can be applied to Schrödinger and Dirac operators, where there is an inner product that al-
lows reductions to partial wave subspace problems [13-15]. This does not occur to K-G operators that have a non-trivial 
structure of “energy norm”, and probably being one of the reasons for the lack of such standard results. Weyl’s criterion 
or the asymmetry form method [14] for self-adjointness in the half-line cannot be used for K-G operators due to the re-
duction procedures at each quantum number channel represent a non-trivial problem, as already mentioned. As discussed 
methodologies (Weyl’s criterion or the asymmetry form method) are not applied in this case, the self-adjointness proper-
ty cannot be extend to whole operator in 𝑹𝑹𝟑𝟑. In particular, even in the level of self-adjointness theorems, only a few 
number of works (especially taking Coulomb singularities) are available in literature to K-G operators, as discussed by 
Gitman et al [14]. Although, Coulomb’s potentials have been suitable to apply Weyl’s criterion. We have known that for 
Schrödinger’s operators, there are physically reasonable examples of potentials providing bound states with positive 
energy. The first potential presented in literature is proposed by Wigner and von Neumann [1], with its experimental 
evidence demonstrated in Ref. [16]. In the ordinary framework of the relativistic quantum mechanics, there are no poten-
tials providing eigenvalues embedded in the continuum spectral region of relativistic operators. We provide an interaction 
potential in which the K-G operator has eigenvalues embedded in the continuum region, i.e., in (−∞,−𝒎𝒎] ∪ [𝒎𝒎,∞). 
General results on the absence of eigenvalues in the essential spectrum to some self-adjoint K-G operators obtained by 
Weder [10, 11] are presented taking electric Coulomb interactions, the core of this work. In fact, this is a widely investi-
gated area of mathematical physics [20], [21], [23] e [24]. We have used the same notation introduced by Schechter [17], 
and the same formalism extensively taken in Weder’s works, Refs. [10, 11] in K-G operators treatment. Besides, some of 
Weder’s theorems are useful to achieve the purposes of this paper, being presented always that necessary. This work is 
organized as follows. In Section 2, it is presented a brief review on Klein-Gordon operator written in Schrodinger’s form, 
as well as is constructed the one-dimensional analogous to the von Neumann-Wigner potential. This potential is still used 
to demonstrate the existence of eigenvalues in the continuum spectrum to K-G operator. In Section 3, the same metho-
dology of previous section is extended to Coulomb interactions. In addition, the absence of eigenvalues in the continuum 
spectrum is demonstrated for some potentials. As it turns, we summarize our main findings and draw some perspectives 
in Section 4. Throughout this work, we use units of  ℏ =  𝒄𝒄 =  𝟏𝟏. 

2. Eigenvalues embedded in the continuum spectrum of Klein-Gordon operator 
We begin this section with a brief review on K-G operators and Weder’s conditions that prove the self-adjointness of 

K-G operator. Remembering that general expression to K-G equation is given by 
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where 𝒙𝒙 ∈ 𝑹𝑹𝒏𝒏, 𝒕𝒕 ∈ 𝑹𝑹,𝑫𝑫𝒋𝒋  = −𝒊𝒊𝒊𝒊/𝒊𝒊𝒙𝒙𝒋𝒋,𝒃𝒃𝟎𝟎(𝒙𝒙) is the electric potential, 𝒃𝒃𝒊𝒊(𝒙𝒙)(𝟏𝟏 ≤  𝒊𝒊 ≤  𝒏𝒏) is the magnetic potential, 
and 𝒒𝒒𝒔𝒔(𝒙𝒙) the scalar potential. By implementing the ansatz transformations of Eq. 2 in Eq. 1 
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It is possible written k-G equation given by expression 1 in its hamiltonian form with electromagnetic and scalar poten-
tials 
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In this case, the energy sesquilinear form associated can be written as 
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It is possible to verify that h is symmetric in relation that sesquiliner form. In general, the value of sesquilinear form is 
not positive. To ensure its positivity, Weder [10, 11] introduced the following assumption:  

I) There is a constant 𝝐𝝐 ≥  𝟎𝟎 such that 
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where 𝒒𝒒± are the positive and negative parts of the measurable function 𝒒𝒒(𝒙𝒙). 
Notice that if I) holds sesquilinear form, (∙,∙)𝑬𝑬, starts to define a norm a 𝕳𝕳𝑬𝑬 is defined as the completion 𝑪𝑪𝟎𝟎∞(𝑹𝑹𝒏𝒏)𝟐𝟐 

with this norm, as can be seen in Ref. [11] (Lemma 2.1). It is relevant to emphasize that for a pure electric potential inte-
raction in the K-G equation 𝒒𝒒𝒔𝒔 = 𝒃𝒃𝒊𝒊 = 𝟎𝟎 and 𝒃𝒃𝟎𝟎 = 𝒆𝒆

|𝒙𝒙|
, I) holds if |𝒆𝒆|  ≤  (𝒏𝒏 −  𝟐𝟐). 

So far we have discuss details of K-G operators as well as some requirement mathematical conditions related to densi-
ty of probability in order to unaltered keep its positivity. Let us now start reviewing the problem of absence of positive 
eigenvalues for Scrhodinger operators. 

We have know that there is an interesting potential in which the eigenvalues equation for Schordinger’s operators has a 
positive eigenvalue embedded in the continuous spectrum with an unitary and positive value. This potential is namely 
von Neumann-Wigner potential, and can be written as [1, 8] 
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where 𝜻𝜻(𝒓𝒓)  =  𝟐𝟐𝒓𝒓 −  𝒔𝒔𝒊𝒊𝒏𝒏(𝟐𝟐𝒓𝒓), |𝒙𝒙|  =  𝒓𝒓 is the distance from the origin in 𝑹𝑹𝟑𝟑, and 𝑽𝑽𝑵𝑵𝑵𝑵(𝒓𝒓) is a physical example in 
which there is a square integrable 𝝍𝝍 with (∆ + 𝑽𝑽 )𝝍𝝍 =  𝝍𝝍 that provides an unitary eingenvalue. The mathematical 
computations to obtaining that potential can be extend to the one-dimensional case using (∆  +  𝑽𝑽 )𝝍𝝍 =  𝝍𝝍. A slightly 
different square integrable eigenfunction in 𝑹𝑹 when compared to 𝑹𝑹𝟑𝟑 case can be obtained by construction of the poten-
tial on the real line. In this situation, it is possible to obtain a similar expression to that given by Eq. 13, with the eigen-
function 

( ) ( )( ) ( )( ) 12sin 1 .x x xψ ζ
−

= +                                  (14) 

Notice that the contructed one-dimensional potential is differ to given by Eq. 13 only by argument 𝒙𝒙 ∈  𝑹𝑹. In addition, 
this allows constructing a potential in which there is a self-adjoint 𝑲𝑲− 𝑮𝑮 operator with positive eigenvalue in 
(−∞,−𝒎𝒎] ∪ [𝒎𝒎,∞). 

In order to demonstrate the existence of a positive eigenvalue let us introduce some concepts and assumptions used by 
Weder [11]: 

( ) ( )2
, sup ,x x yN g y w x y dyα δ αδ− <= −∫                                  (15) 



R. Ferreira, F. N. Lima, A. S. Ribeiro 
 

 
DOI: 10.26855/jamc.2021.09.001 148 Journal of Applied Mathematics and Computation 
 

where 

( )
,

1 log ,
1, ,

nx n
w x x n

n

α

α

α
α

α

− <


= − =
 >

 

( ) ( ),1N g N gα α≡  and Nα  the set of all g such that ( )N gα  is bounded. 

𝑰𝑰𝑰𝑰’) for ( ) 21 , ii n b x N≤ ≤ ∈ , and if ( )2 8
2, , 0in N b≥ →  as 0s → . 

𝑰𝑰𝑰𝑰𝑰𝑰’) ( ) 1 2
q x ∈ , and if ( )2 82, , 0n N q≥ →  as 0s → . 

𝑰𝑰𝑽𝑽’) ( ) ( ) 41 ,n
ii

i

C x b x N
x=

 ∂
= ∈ ∂ 
∑  and if ( )4 84, , 0n N C≥ →  as 0s → . 

𝑽𝑽’) ( ) 4q x N∈ , and if ( )4 84, , 0n N q≥ →  as 0s → , ( )( )2

2 41
n

iib b x N
=

= ∈∑ , and if ( )2
4 8

4, , 0n N b≥ →  as 

0s → . 
𝑽𝑽𝑰𝑰’) ( )0 2b x N∈ , and if ( )0

2 8
2, , 0n N b≥ →  as 0s → . 

These set of conditions is relevant to correctly understand the follow theorems, as well as to achieve the central goal of 
this section, i.e., demonstrate the existence of positive eigenvalue in the continuous spectrum. 

Allow us to write the theorem 2 from Weder’s [11] article as Theorem 1. 
Theorem 1. If 𝑰𝑰) and 𝑰𝑰𝑰𝑰’) − 𝑽𝑽𝑰𝑰’) are satisfied, 𝒉𝒉 has a self-adjoint extension, 𝑯𝑯, on HE with domain 𝑫𝑫(𝑯𝑯)  =

 𝑯𝑯𝟐𝟐 ⊗𝑯𝑯𝟏𝟏. 
Here 𝑯𝑯𝒌𝒌(𝒌𝒌 =  𝟏𝟏,𝟐𝟐) are standard Sobolev spaces 𝑵𝑵𝒌𝒌,𝟐𝟐. We note that in some cases, a bounded 𝒈𝒈 implies 𝑵𝑵𝜶𝜶(𝒈𝒈)  <

 ∞. 
So far, we demonstrate that the 𝒉𝒉 operator has a self-adjoint extension, used along of this section. 
We have almost all tools to demonstrate the central theorem of this section, except the Lemmas 1 and 2 that are pre-

sented follow. Particularly, the Lemma 1 is interesting in the treatment of bounded potentials, and its proof is trivial. 
Lemma 1. Let 𝒈𝒈(𝒚𝒚) be bounded and 𝜶𝜶 ≥  𝒏𝒏, then 𝑵𝑵𝜶𝜶(𝒈𝒈)  is bounded. 
An alternative form to 𝐈𝐈 is presented in Lemma 2, whereby the condition I is easly verified.  
Lemma 2. Let 

( ) ( ) ( )2,sup ,xS q q y G x y dyλ λ= −∫                                  (16) 

where 𝑮𝑮𝟐𝟐,𝝀𝝀(𝒒𝒒) is the inverse Fourier transform of 

( ) ( ) 12
22 , 0,
n

π λ η λ
−− + ≥                                   (17) 

then I) holds if and only if 𝑺𝑺𝝀𝝀(𝒒𝒒−)  ≤  𝟏𝟏, for some 𝝀𝝀 < 𝒎𝒎𝟐𝟐. 
A proof of Lemma 2 can be found in Ref. [11]. 
As addressed in introduction of this paper, a traditional problem of spectral theory of Srchrodinger operators is deter-

mine the existence, or no, of eigenvalues in the essential spectrum. However, when we take K-G operators such existence 
need to be better investigated. In order to analyse the eventual existence of eigenvalues in the essential spectrum to K-G 
operators, we present the follows theorem where a pure scalar interaction is taken into account. The Theorem 2 shows 
that if the scalar interaction is the von-Neumann-Wigner potential there are eigenvalues embeeded in the esssential spec-
trum of the k-G operator. It is relevant to emphasize that this our result can be interpreted as the relativistic version of the 
demonstrations already introduced by von-Neumann-Wignner to Schrodinger operators in Ref. [1]. This result does not 
occurs to pure electric interaction, as can seen in section 3. 

Theorem 2. 𝒉𝒉 with a real valued pure scalar interaction 
                                                                                           𝑞𝑞𝑠𝑠 = WNV                                               (18) 
where 𝑽𝑽𝑵𝑵𝑵𝑵 is von-Neumann Wigner potential, has a self-adjoint extension 𝑯𝑯𝑭𝑭, with 𝑫𝑫(𝑯𝑯𝑭𝑭)  =  𝑯𝑯𝟐𝟐 ⊗  𝑯𝑯𝟏𝟏, and fur-
ther 𝑯𝑯𝑭𝑭 has eigenvalues embedded in (−∞,−𝒎𝒎] ∪ [𝒎𝒎, +∞). 

Proof. Keep 𝒏𝒏 =  𝟏𝟏 and the pure scalar interaction given by Eq. 18, then II’) and IV’) are directly satisfied. By the 
fact that in this particular case 𝒒𝒒 =  𝒒𝒒𝒔𝒔, and 𝑽𝑽𝑵𝑵𝑵𝑵(𝒙𝒙) is bounded, it is possible to see that |𝒒𝒒|𝟏𝟏/𝟐𝟐 ∈ 𝑵𝑵𝟐𝟐 by applying 
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Lemma 1, and then we have III’). In an analogous way, V’) and VI’) hold as well. Let us suppose I) to be valid, and this 
will be really demonstrated in the end of this theorem, then, by Weder’s theorem, 𝑯𝑯𝑭𝑭 is the necessary self-adjoint ex-
tension. By using of the eigenvalue equation 𝑯𝑯𝑭𝑭𝝍𝝍 =  𝑬𝑬𝝍𝝍, one get 
                                                                 ( 1−∆ + 𝑞𝑞𝑠𝑠 2m+ ) ( )2

1 1 1 2,E H Rψ ψ ψ= ∈                                (19) 

where ∆𝒏𝒏 denotes the Laplacian in n dimensions. Pick 𝒒𝒒 =  𝑽𝑽𝑵𝑵𝑵𝑵, then we have 𝑬𝑬 =  ±√ 𝟏𝟏 +  𝒎𝒎𝟐𝟐 due to the pres-
ence of von-Neumann Wigner potential in (19). It is important to stress that to the value 𝑬𝑬 =  −√ 𝟏𝟏 +  𝒎𝒎𝟐𝟐 the I is not 
satisfied. Although this found negative value is in the known Dirac sea region, the presence of eigenvalues in this region 
should be better investigated. Now, let us consider I). For the choice above of q, and by Lemma 2, we see that I) holds if 
𝑺𝑺𝝀𝝀(𝑽𝑽𝑵𝑵𝑵𝑵

− )  ≤  𝟏𝟏. Indeed 

( ) ( ) ( )2sup , 1 2 sup ,x y dy
WN

x x
q y G x y dy V e λ

λ
λ − −− −− =∫ ∫                       (20) 

where the “suppression” of the integral ensures, the existence of an infinite number of particular values √𝛌𝛌 < 𝑚𝑚 or, 
such that I) holds true. QED 

Notice that the leading term of 𝑽𝑽𝑵𝑵𝑵𝑵 for large 𝒙𝒙 is given by 

( )8sin 2
,

x
x

−                                        (21) 

hence, 𝐥𝐥𝐥𝐥𝐥𝐥𝒔𝒔𝒔𝒔𝒔𝒔𝒙𝒙𝒙𝒙(𝒊𝒊𝑽𝑽𝟐𝟐)/𝒊𝒊𝒙𝒙 =  𝟏𝟏𝟏𝟏, where 𝑽𝑽𝟐𝟐 is the infinitely differentiable function defined with more details in 
Theorem 3 of section 3. Therefore, it is possible to conclude that 𝑬𝑬𝟐𝟐 −𝒎𝒎𝟐𝟐 < 16 in Theorem 2 (see the intitulated 
“main Theorem” in Ref. [8]). Thus, even in this “counter-example case”, one can concludes that there are no eigenvalues 
in �√𝟏𝟏𝟏𝟏 +  𝒎𝒎𝟐𝟐,∞�. 

We would be have problems when applying Weder’s theorem in the case 𝒏𝒏 ≥  𝟐𝟐 (see Theorem 2). For example, 
even for 𝒏𝒏 =  𝟐𝟐, we do not have III’) completely satisfied since 𝑵𝑵(𝟐𝟐,𝒔𝒔)(𝒒𝒒) ↛ 𝟎𝟎 as 𝒔𝒔 →  𝟎𝟎 for 𝒒𝒒 (in the case under 
consideration). The fact we have used the pure scalar interaction is quite technical. Suppose we would like to find eigen-
values in [𝒎𝒎, +∞), for 𝒉𝒉 with a pure electric interaction given by 

( )2
0 02 .WNb Eb V− + =                                   (22) 

Thus, even for the most suitable choice for 𝒃𝒃𝟎𝟎, we would find problems with the expressions involving the require-
ment I) with the map (see expression 22), the stronger inequality 

( )1 1,WNS q V −+ ≤                                     (23) 

where 𝒒𝒒𝟏𝟏 =  𝟏𝟏 + 𝒎𝒎𝟐𝟐 takes place. So, Theorem 2 to pure electric interactions remains open for plausible values of the 
mass.  

So far, we have demonstrated the existence of a positive eigenvalue in the region of spectrum similar to the found re-
sults for continous spectrum of non-relativistic Schorodinger operator. In next section, as already mentioned above, in 
contrast of Theorem 2, we prove that K-G operator with pure eletric interactions does not have eigenvalues embedded in 
the essential spectrum. 

3. Absence of eigenvalues in “continous spectrum” region for Coulomb electric interaction 
Now, we extend same methotodology of previous section in order to determine the absence of eigenvalues in the es-

sential spectrum of K-G operators with Coulomb interactions. To do that, we list some important results about 
self-adjointness, and on the essential spectrum location, using a sequence of complementary assumptions introduced by 
Weder in Ref. [11]. In short, these assumptions are related to the self-adjointness; the essential spectrum location; and the 
absence of eigenvalues theorems concerning to the K-G operators. Weder’s hypothesis (see Ref. [11]) are listed in I)-V). 
In addition, we present here assumption VI). Note that hypotesis I) is already presented in section 2. 

II) (1) ( ) 2 , 1ib x N i n∈ ≤ ≤ , and if ( )
0

22, , 0in N b
δ
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→
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(2) ( ) ( ) ( ) 1 2
1 1 2,cq x q x q x q N= + ∈ , and if ( ) ( )1 2

2 12, , 0 0cn N q q x
δ
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→
≥ → ⋅ ≡  if 2n ≤ , and  
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2

2 , 2 2c
eq x e n
x

= − −  if 2n > . 
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VI) ( )0
cb x  is such that, for some real k, ( ) ( )2

0 0
c cb x kb x− +  is a real function in Rn so that: 

(1) Multiplication by ( ) ( )2
1 2 0 0

c cV V b x kb x+ = − +  is −∆ -bounded with relative bound less than 1. 

(2) There is a closed set S of measure zero so that \nR S  is connected and so that 1 2V V+  is bounded on any com-

pact subset of \nR S . 
(3) 1V−  is bounded outside some ball { }0x x r< , and ( )2

0 0x b x →  as x →∞ . 

(4) 2V  is bounded outside some ball { }0x x r< , and ( )2
0 0kb x →  as x →∞ . (This assumption can be replaced 

by ( )0 0kb x <  for 0x r> ). 

(5) If 0
cb , maps r in ( )0 ,cb r ⋅  from ( )0,∞  to ( )1nL S∞ −  where 1nS −  is the ( )1n − -dimensional sphere, then for 

( )0 0, cx r r b x= >  is differentiable as an L∞ -valued function and for some suitable k, 0lim 0
c

r
b

k r
r

→∞
∂

≤
∂

. 

If I) and II) are satisfied, the norm of the completion 𝕳𝕳𝑬𝑬 is equivalent to the norm of 𝑯𝑯𝟏𝟏(𝑹𝑹𝒏𝒏)  ⊗𝑳𝑳𝟐𝟐(𝑹𝑹𝒏𝒏), and they 
coincide as sets (this is the Lemma 1.4 by Weder [11]). By this lemma and assumption II), l (remember Eq. (7) above) 
has a self-adjoint bounded below extension, denoted by L (this is the Lemma 1.5 in Ref. [11]).  

Now, let 
( ) ( ) 1,LH H V D H D L H= + = ⊗                               (24) 

0 1 0 0
,

0 0LH V
L Q
   

= =   
   

 

Theorem 3. The self-adjoint extension 𝑯𝑯 of the K-G operator, with a pure electric field 𝒃𝒃𝟎𝟎𝒄𝒄  satisfying I) - VI) (we 
call this operator 𝑯𝑯� ), has no eigenvalues embedded in its essential spectrum. 

As an application of Theorem 3, we can prove the 𝑹𝑹𝟑𝟑 case, in which includes the non-central electric Coulomb inte-
raction. Even though the following result is stated here as the Theorem 4, it is a corollary of Theorem 3. Notice that for 
the important case 𝑺𝑺 =  {𝟎𝟎} we don’t have the necessary connectedness present in assumption VI) - 2), and in this case 
we shall directly apply other Theorem (see details in Ref. [8]) with appropriate modifications, presented here as the 
Theorem 5 below. 

Theorem 4. The self-adjoint extension, 𝑯𝑯, of the K-G operator with a pure 𝒃𝒃𝟎𝟎𝒄𝒄  as a Coulomb interaction, 𝒆𝒆
|𝒙𝒙|

 , in 𝑹𝑹𝟑𝟑 
(called here 𝑯𝑯�𝑪𝑪 ), has no eigenvalues embedded in its essential spectrum in the following sense: for the attractive case 
(𝒃𝒃𝟎𝟎𝒄𝒄 < 0) this is valid for [𝒎𝒎,∞), and for the repulsive (𝒃𝒃𝟎𝟎𝒄𝒄 > 0), it holds in (−∞,−𝒎𝒎]. 

Proof of the Theorem 3: We can use to K-G operator, and so demonstrate Theorem 3, the same technique already 
used to Schrödinger’s operator (as in Theorem 2), where is necessary to written K-G operator in Schodinger’s form. On 
the other hand, it is relevant to observe some differences. In this case, see that we are using pure electric interactions, and 
additional cares must to be taken during the transition process from K-G to Schrödinger equation. In fact, the relation 
between Schrödinger and K-G operators is such that it is possible to construct a map between particular effective 
Schödinger potentials, and pure electric potentials in the structure of the K-G operator. Although such map includes an 
explicit dependence on the spectral parameter, it is important to emphasize that all the computations can be perfectly 
done by keeping then fixed. More details about this approach can be found in Ref. [18]. 

We have that the self-adjoint extension, 𝑯𝑯� , of the K-G operator without scalar potential, magnetic potential and 
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𝒃𝒃𝟎𝟎𝟏𝟏 = 𝟎𝟎, becomes 

( )
( ) ( )

22
0

1

0 1

0c
H

m b

D H D L H

 
 =
−∆ + −  

= ⊗





 

It is clear that the absence of magnetic and scalar potentials, and the choice 𝒃𝒃𝟎𝟎𝟏𝟏 = 𝟎𝟎, are all in accordance with Wed-
er’s assumptions I) - V). Then, we write the eigenvalue equation 𝑯𝑯𝝍𝝍�   =  𝑬𝑬𝝍𝝍, 

( )1
1

2

= D H
ψ

ψ
ψ
 

∈ 
 

  

Hence, in terms of 𝝍𝝍𝟏𝟏, one can see the compatibility of the above K-G eigenvalue equation with the Schrödinger type 
one, 

( ) ( )( ) 2 2
1 1 0 02 2 , .c c

eff effV E V b Eb E E mψ ψ−∆ + = ≡ − + ≡ −   

Pick 𝑽𝑽𝟏𝟏(𝒙𝒙)  =  −(𝒃𝒃𝟎𝟎𝒄𝒄  )𝟐𝟐  and 𝑽𝑽𝟐𝟐(𝒙𝒙)  =  𝟐𝟐𝑬𝑬𝒃𝒃𝟎𝟎𝒄𝒄 . See that by VI), (𝑳𝑳)  =  𝑯𝑯𝟐𝟐 , which is the domain of the free 
Schrödinger operator, and this is enough to the use of known Kato’s theorem (see more details in Ref. [19]). Hence, 𝑽𝑽𝒆𝒆𝒆𝒆𝒆𝒆 
satisfies all the hypothesis of Kato-Agmon-Simon’s theorem [2]. Thus, the Theorem 3 is proven. QED 

Proof of the Theorem 4: As mentioned, the proof of Theorem 4 is based in the use of a theorem demonstrated in Ref. 
[8], with conditions sligtly modified without loss of generality, in order to adapt it to our case. Here, we enunciate it as 
Theorem 5. 

Theorem 5. Let 𝑽𝑽 be a real valued function in 𝑹𝑹𝒏𝒏\0 with the following properties: 
(a) 2

1 2;V L L V V V with∞∈ + = +  

(b) for some R0, V1 and V2 are C3 in { }0M r r R= > , 

(c) ( )1lim 0r V r→∞ = , 

(d) for ( )0 2, 0,r R V r> <  

(e) for 2
0 2

1, .Vr R V
r r

∂
> − ≤ −

∂
 

Then V−∆ +  has no eigenvalues in ( )0,∞  
We have that the self-adjoint extension of the K-G operator𝑯𝑯�𝑪𝑪, without scalar and magnetic potentials, 𝒃𝒃𝟎𝟎𝟏𝟏 = 𝟎𝟎 and 

𝒒𝒒𝑪𝑪(𝒙𝒙) = − 𝒆𝒆
|𝒙𝒙|𝟐𝟐

, |𝒆𝒆|  ≤  (𝒏𝒏 −  𝟐𝟐)/𝟐𝟐(if 𝒏𝒏 >  2), and 𝒃𝒃𝟎𝟎𝑪𝑪(𝒙𝒙) = 𝒆𝒆
|𝒙𝒙|

, |𝒆𝒆|  ≤  (𝒏𝒏 −  𝟐𝟐)/𝟐𝟐√𝟏𝟏𝟏𝟏 (𝒊𝒊𝒆𝒆 𝒏𝒏 >  3), becomes 

 

 
It is easy to see that the lack of magnetic and scalar potentials, and the choice 𝒃𝒃𝟎𝟎𝟏𝟏 = 𝟎𝟎, are turning I)-V) conditions sa-

tisfied. Hence, we get the eigenvalue equation for 𝑯𝑯�𝑪𝑪,𝑯𝑯�𝑪𝑪𝝍𝝍 =  𝑬𝑬𝝍𝝍, 

( )1

2

.D Hc
ψ

ψ
ψ
 

= ∈ 
 

  

Then, in terms of the component 𝝍𝝍𝟏𝟏 ∈ 𝑯𝑯𝟐𝟐 , one can see the compatibility of the above K-G eigenvalue equation with 
the following Schrödinger equation, 

( )
2

2 2
1 1 2, 2 , .eff eff

e eV E V E E E m
xx

ψ ψ−∆ + = ≡ − + ≡ −   

( ) ( )

2
2

2

1

0 1
2C

C

e eH m
xx

D H D L H

 
 

=  −∆ + −
 
 

= ⊗
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In this case, pick 𝑽𝑽𝟏𝟏(𝒙𝒙) = − 𝒆𝒆𝟐𝟐

|𝒙𝒙|𝟐𝟐
 and 𝑽𝑽𝟐𝟐 = 𝟐𝟐𝑬𝑬 𝒆𝒆

|𝒙𝒙|
, hence 𝑽𝑽𝒆𝒆𝒆𝒆𝒆𝒆 holds for all hypothesis of Simon’s theorem or its 

modification given by Theorem 5, which means that the components 𝝍𝝍𝟏𝟏 ∈ 𝑯𝑯𝟐𝟐 are ensuring the use of Kato’s theorem, 
and so it is possible directly to apply the Theorem 5, with exception that for the attractive case, (d) holds only if 𝑬𝑬 >  𝑚𝑚, 
and that for the repulsive case it holds only if 𝑬𝑬 <  𝑚𝑚. Thus, the Theorem 4 is proven. QED 

4. Conclusion 
We found a class of physical potentials in which there is no eigenvalues embedded in the continuous region of relati-

vistic spectrum. It is possible to see that the fact associated to the non-existence of eigenvalues embedded in the essential 
spectrum can be interpreted as an expected result. We clearly show that with the correct location of continuous spectrum 
together with the result of theorem 3, we can rigour confirm if thresholds ±𝒎𝒎 belong, or no, to the point spectrum. Here, 
we emphasize that essential spectrum coincides with (−∞,−𝒎𝒎] ∪ [𝒎𝒎,∞), and so ±𝒎𝒎 dont belong to the point spec-
trum. Generally, these results are not so clear by use of the computational calculations of theoretical physics. It is worthy 
of emphasis that the present paper demonstrates a relativistic K-G operator contains eigenvalues in its essential spectrum, 
as occurs to Schrodinger’s operators. This is a new and interesting result, undemonstrated before in literature to relativis-
tic operators, and introduced here. It is remarkable that the potential in which this occurs is von-Neumann Wigner poten-
tial, as expected. In particular, this potential provides similar results for Schrödinger’s operators, i.e., the existence of an 
unitary eigenvalue in the essential spectrum. We have expect to be possible extend the same methodology of theorem 2 in 
order to investigate the existence of eigenvalues in the essential spectrum for K-G operator to higher-dimensional order. 
However, in this case, the self-adjointness properties must be better investigated. 
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