

Aplicativos Mobiles Educacionais para Ensino de Disciplinas de Estruturas na área de Engenharia Civil

Projeto de pesquisa para desenvolvimento de aplicativos Web e *Mobile* para auxílio no ensino de disciplinas de estruturas na área de Engenharia Civil.

Coordenador do Projeto

Prof. Iuri Augusto Alves Lustosa

Professores Participantes do Projeto

Prof. Athânio de Souza Silveira

Prof. Ana Paula Lima de Carvalho

Parnaíba, abril, 2021

1. Identificação

Curso: Aplicativos Mobiles Educacionais para Ensino de Disciplinas de Estrutura na Área de

Engenharia Civil

Carga Horária: 120h

RESUMO¶

A forma de aprender e ensinar tem mudado ao longo dos anos. A aceleração é, sem dúvidas, um vetor de grande impacto nessas mudanças. Desse modo, cumpre notar a importância de ajustarmos continuamente o processo de ensino-aprendizagem. Segundo Neto (1999), 1998 foi um ano marcado pelo fim da primeira etapa do processo de informatização das escolas públicas brasileiras, desde então o processo de ensino se modernizou como novas forma de ensino. As tecnologias de informação são aliadas no cenário de comunicação atual, pois nos permite ensinar e aprender de formas diferentes e modernas, usando, por exemplo, ferramentas tais como dispositivos mobiles, navegação na internet etc. Existem disciplinas de estruturas, na área da engenharia civil, nas quais o aluno precisa desenvolver e entender toda uma rotina de um procedimento de cálculo para chegar a um resultado preciso para, após isso, e assimilado todo o processo, transformar tudo em um algoritmo. Quando rotinas de cálculo são transformadas em algoritmos, sobressai a produtividade, fator que influencia outros pontos importantes no processo de ensino e aprendizagem. É possível desenvolver mais cálculos precisos em menos tempo e com a mesma precisão. Quando se produz alguma tarefa em menos tempo, o cérebro fica sem se sentir pressionado, ocorre o pensar-tranquilo, pois foi tudo entregue no prazo combinado ou até antes. Assim, o aluno consegue entender a rotina, processar várias vezes o mesmo cálculo e ainda pode repetir esse processo mudando as variáveis quantas vezes quiser em apenas alguns segundos. Dessa forma, é possível conseguir qualidade no ensino usando menos "gasto de energia" no processo completo. O projeto será desenvolvido transformando rotinas de cálculo importantes para facilitar o aprendizado e, consequentemente, sobrar mais tempo para o ensino de pontos específicos durante alguma atividade. Junto com os aplicativos, arquivos em formatos de textos, compondo ajudas contendo todos os cálculos também devem contemplar o

produto dos *Apps*. Quanto à linguagem de programação adotada, a avaliação contemplará a revisão bibliográfica mais adequada à aplicação, trabalhando com metodologia ágil (scrum, XP) e conteúdos de engenharia de software, na operação e desenvolvimento do projeto, com teste e validação, a qual será apresentada nos resultados durante o projeto. Diante disso, a proposta deste projeto é desenvolver aplicativos mobile para auxiliar no ensino de disciplinas de estruturas na área de engenharia civil. Com essas ferramentas o aluno pode entender toda a rotina de cálculo para obter os resultados e, após essa etapa, lançar mão do aplicativo para avaliar resultados em pouco tempo.

1. Introdução

A tecnologia está inserida já em quase todas as atividades mundiais. No ensino-aprendizagem não é diferente. Atualmente é possível ensinar e aprender não somente com livro, papel e caneta. Utilizando dispositivos móveis e inteligentes (*Smart Mobile*), os professores e alunos desenvolvem e compartilham conhecimento quase que instantaneamente.

O processo ainda é de transição, por mais que já tenha um certo tempo. Muitos professores não aprenderam com essas tecnologias, e muitos estudantes ainda não dispõem desses meios para aprender. Gerações estão aptas e têm facilidade com esses processos, outras não. O que é fato é que a tecnologia chegou e é preciso utilizá-la. Essa cultura não estará no nosso futuro ela é presente, e é chamada de cibercultura (Lemos, 2003). As demandas de atividades só aumentam e o tempo para executá-las diminui ou, às vezes, é o mesmo. Isso implica uma relação de maior consumo do potencial humano em resolver problemas, sendo que o tempo ainda permanece o mesmo (24 h é a duração do dia).

Para resolver esse problema, a utilização de máquinas tem sido incorporada em vários setores, inclusive na educação. Exemplo simples disso é: há muito tempo deixou-se de utilizar a máquina de datilografar para usar desktops ou notebook associados a impressoras. Não tão longe nem impressão é tão comum, quando se adota por medidas ambientais arquivos digitais (facilitando até pesquisa de palavras dento do próprio texto).

A tecnologia chegou, aliás já está aí faz muito tempo e para muitos ainda é complicado utilizá-la. Na sala de aula e diante do contexto atual, é importante descomplicar o seu uso para todos que frequentam a escola, pois a tecnologia é um grande aliado no processo ensino-aprendizagem, principalmente para algumas disciplinas específicas na área de engenharia civil. Projetos estruturais, que envolvem algumas etapas as quais podemos citar: dimensionamento, detalhamento e requisitos de qualidade e durabilidade da estrutura (NBR 6118, 2014). Com intuito de auxiliar no aprendizado dessas disciplinas, requisitos para desenvolvimentos destes projetos estruturais, este projeto visa a desenvolver aplicativos educacionais para facilitar a aprendizagem dos alunos nas disciplinas de engenharia civil.

Assim, iremos desenvolver aplicativos que possam facilitar, motivar e ampliar a visão dos alunos nos conteúdos ministrados nas disciplinas do curso de edificação, tornando o processo de ensino-aprendizado mais realista e motivador. Segundo Almeida (2001), com as tecnologias de comunicação e interação, o aprendizado privilegia a construção do conhecimento, permitindo incorporar em vários ambientes um meio concreto de comunicação entre as partes envolvidas.

2. Justificativa

Estes aplicativos são importantes para auxiliar no processo ensino-aprendizagem, pois viabilizarão que o aluno e o professor disponham de mais tempo para discutir resultados e rotinas de cálculo, avaliando e alterando variáveis ou parâmetros que julgarem importantes nos cálculos. Logo será de grande relevância para a educação na área de engenharia civil.

3. Objetivos

3.1 Geral

Desenvolver aplicações *mobile* e web para auxiliar no processo de ensino-aprendizagem na área de engenharia civil nas disciplinas de estruturas.

3.2 Específicos

Fornecer aos discentes bases técnica sobre metodologia científica;

Produzir tutoriais para inserir como ajuda no aplicativo;

Produzir aplicativos na linguagem para plataforma web e mobile que irá auxiliar na engenharia civil - área de estruturas;

Avaliar a experiência de usuários e usabilidade no aplicativo mobile;

Subsidiar a escrita técnica para a produção de relatórios e eventuais publicações de resultados.

4. Desenvolvimento

O projeto será desenvolvido por meio de reuniões na plataforma *classroom* para discutir o com os professores envolvidos e os discentes participantes o andamento e cumprimento das metas do projeto. Os encontros aconteceram semanalmente através da Plataforma *Google Meet*.

5. Resultados e impactos esperados

Ao final do projeto de ensino, os discentes deverão ter um conhecimento técnico sobre assuntos de engenharia de estruturas o suficiente para preencher as informações necessárias para o desenvolvimento dos aplicativos. No que diz respeito a parte de tecnologia e programação é esperado que sejam desenvolvidos aplicativo para utilização no processo de ensino aprendizagem e aplicado em aulas futuras.

Além disso, este é um projeto piloto que tem a intenção de se transformar em um projeto de pesquisa futuro. Por isso, tem o objetivo também de preparar os discentes para uma futura seleção para fazer parte de pesquisas futuras de desenvolvimento destes aplicativos. Durante o curso também serão apresentados aos discentes fundamentos de metodologia de pesquisa e escrita técnica, os quais auxiliarão os alunos na pesquisa bibliográfica neste projeto e em suas futuras jornadas acadêmicas.

Quanto aos impactos esperados, vislumbramos uma experiência dos usuários (professor e discente) satisfatória e que otimize o tempo e privilegie a evolução do conhecimento técnico.

6. Avaliação do projeto

A avaliação será qualitativa e observada em todos os encontros a participação e interesse dos participantes.

7. Cronograma

Atividades e/ou etapas:

- 1) Planejamento (10h);
- 2) Português técnico e metodologia científica (5h);
- 3) Revisão Bibliográfica (15h);
- 4) Levantamento dos Assuntos importantes para inserir nos App (10h);
- 5) Escolha da Linguagem de programação para desenvolvimento do APP (10h);
- 6) Desenvolvimento de rotinas de cálculo e imagens (10h);

- 7) Desenvolvimento de algoritmos (15h);
- 8) Desenvolvimento de códigos de programação(15h);
- 9) Desenvolvimento da interface gráfica (5h);
- 10) Testes de utilização dos aplicativos (10h);
- 11) Desenvolvimento de tutoriais de ajuda para inserir nos App (10h);
- 12) Conclusão da pesquisa e entrega do relatório final (5h);

ATIVIDADES		2021.1					2021.2				C.H.
		ABRIL	MAIO	JUNHO	JULHO	AGOSTO	SETEMBRO	OUTUBRO	NOVEMBRO	DEZEMBRO	C.H.
1	Planejamento										10 h
2	Português Técnico e Metodologia Científica										5 h
3	Revisão Bibliográfica										15 h
4	Levantamento dos Assuntos importantes para inserir nos App;										10 h
5	Escolha da Linguagem de programação para desenvolvimento do APP;										10 h
6	Desen volvimento de rotinas de cálculo e imagens;										10 h
7	Desen volvimento de algoritmos										15 h
8	Desenvolvimento de códigos de programação;										15 h
9	Desenvolvimento da interface gráfica;										5 h
10	Testes de utilização dos aplicativos										10 h
11	Desenvol vimento de tutoriais de ajuda para inserir nos App;										10 h
12	Conclusão do projeto e entrega do relatório final										5 h
										C.H.	120 h

8. Inscrição e Seleção

Avaliação por meio de prova objetiva, onde serão aprovados os candidatos seguindo o critério de maior nota até o preenchimento das vagas;

Total de vagas: 4 vagas para alunos do curso Técnico em Edificações e 4 vagas para alunos do curso Técnico em Informática.

Local da Inscrição: Site do IFPI

9. Referências Bibliográficas

- Técnico em Edificações

Paulo: Pearson Makron Books, 1995.

ABNT - NBR 6118: Projeto de Estruturas de Concreto - Procedimento. Associação Brasileira¶ de Normas Técnicas, Rio de Janeiro, 2014.

ABNT - NBR 6120: Cargas para o Cálculo de Estruturas de edificações. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT - NBR 6123: Forças Devidas ao Vento em Edificações. Associação Brasileira de Normas Técnicas, Rio de Janeiro

ALONSO, Urbano Rodriguez. **Dimensionamento de fundações profundas**. São Paulo: Edgard Blucher, 1989.

ARRIVABENE, Vladimir. Resistência dos materiais. São Paulo: Makron Books, 1994.

BEER, Ferdinand P; JOHNSTON JR, E. Russel. Resistência dos materiais. 3. ed. São

CARNASCIALI, Carlos Celso. **Estruturas metálicas na prática.** São Paulo: McGraw Hill do Brasil; Brasília, INL, 1974.

FUSCO, Péricles Brasiliense. **Técnica de armar as estruturas de concreto**. São Paulo: Pini, 1995.

GERE, James M. **Mecânica dos materiais**. São Paulo: Pioneira Thomsom Learning, 2003.

HELENE, Paulo. **Manual de reparo, reforço e proteção de estruturas de concreto**. 2. ed. São Paulo: Pini, 1992.

HIBBELER, R. C. Resistência dos materiais. 5. ed. São Paulo: Prentice Hall, 2004.

HUME-ROTHERY, W. Estruturas das ligas de ferro: introdução elementar. São Paulo

Edgard Blucher, 1968.

MOLITERNO, Antônio. Caderno de estruturas em alvenaria e concreto simples. São

Paulo: Edgard Blucher, 1995.

ROCHA, Aderson Moreira da. **Teoria e prática das estruturas: isostática**. Rio de Janeiro: Editora Científica, 1973. 3 v._____. **Teoria e prática das estruturas: hiperestática plana geral: parte 1.** 5. ed. Rio de Janeiro: Editora Científica, 1976. 3 v.

SOUZA, Vicente Custódio Moreira de; RIPPER, Thomaz. **Patologia, recuperação e reforço de estruturas de concreto**. São Paulo: Pini, 1998.

SUSSEKIND, José Carlos. **Curso de análise estrutural 1: estruturas isostáticas**. 8. ed. Porto Alegre/Rio de Janeiro: Globo, 1984. 2 v.

- Técnico em Informática

ALMEIDA, M. E. B.. Formando Professores para Atuar em Ambientes Virtuais de Aprendizagem. In: Almeida, Fernando (organizador). Educação a Distância: formação de professores em ambientes virtuais e colaborativos de aprendizagem. São Paulo: MCT/PUC SP, 2001.

BARRY, Paul. Use a cabeca! Python. Alta Books, 2013.

CONVERSE, Tim; PARK, Joyce. PHP: a bíblia. Rio de Janeiro: Campus, 2003.

LAGES, N.; GUIMARÃES, A. Algoritmos e estruturas de dados. LTC, 2008.

LEMOS, A., Cibercultura. **Alguns pontos para compreender a nossa época. In**: LEMOS, A., CUNHA, P. Olhares sobre a cibercultura. 1. Ed. Porto Alegre: Sulina, 2003. MILANI, André. **MySQL: guia do programador**. São Paulo: Novatec, 2006.

MILANI, André. Construindo Aplicações Web com PHP e MySQL. São Paulo: Novatec, 2010.

NETO, Hermínio Borges., **Uma classificação sobre a utilização do computador pela escola.** RV. Educação em Debate, ANO 21, N°37. Fortaleza, 1999. P.135-138.

SOUZA, C.M., 2003. **Referência da Linguagem de Programação do VisuAlg**. Endereço: http://www.apoioinformatica.inf.br/visualg/o-visualg. Acesso em 21/01/2011.

WELLING, Luke; THOMSON, Laura. PHP e MySQL: desenvolvimento Web. Rio de Janeiro: Campus, 2005.